Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yin-Xiang Lu, ${ }^{\text {a }}$ Peng Guo, ${ }^{\text {a }}$
Yong-Zhi Cai, ${ }^{\text {a }}$ Wei Xu, ${ }^{\text {a, }{ }^{\text {b }} \text { * }}$
Lin-Hong Weng ${ }^{b}$ and
Yong-Ming Huang ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Materials Science, Fudan University, Shanghai 200433, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China

Correspondence e-mail: wexu@fudan.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.059$
$w R$ factor $=0.130$
Data-to-parameter ratio $=12.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

(1-Phenyl-2,3-dihydro-1 H-benzimidazol-2-ylidene)malonodinitrile

The title compound, $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{4}$, has been designed and synthesized for use as a new potential organic molecular electronic material. There are hydrogen bonds in the structure, which are responsible for the formation of linked pairs of molecules. Weak interactions are observed between antiparallel cyano substituents.

Comment

We have designed and synthesized the title compound, (I), as a new potential organic molecular electronic material with high thermal stability. The compound was synthesized by the reaction of N-phenyl-o-phenylenediamine and 2-cyano-3,3bis(methylthio)acrylonitrile, which was prepared in situ by a modification of the literature method of El-Shafei et al. (1995).

(I)

Fig. 1 depicts the structure of (I). As can be seen, the angle $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 3\left[176.3(3)^{\circ}\right]$ is different from $\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$ [179.2 (3) $)^{\circ}$, and $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 1\left[125.5(2)^{\circ}\right]$ is larger than $\mathrm{C} 4-$ C3-C2 [117.7 (2) ${ }^{\circ}$]. The distance between C1 and the centroid of the C5-C10 phenyl ring is $3.524(4) \AA$. The $\mathrm{C} 1 \cdots \mathrm{C} 5$ distance is remarkably shorter [2.992 (4) \AA] than the sum of the van der Waals radii ($3.40 \AA$); this is indicative of $\pi-\pi$ interaction.

Figure 1
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Received 21 November 2003
Accepted 13 February 2004
Online 28 February 2004

Inspection of the packing structure of (I) reveals N4$\mathrm{H} 4 \cdots \mathrm{~N} 2^{\mathrm{i}}$ hydrogen bonds (Table 1). These are responsible for the formation of two-membered aggregates (Fig. 2) (Nesterov et al., 2000). In addition, weak intermolecular interactions are also observed between antiparallel cyano substituents (Bock et al., 1996). Such interactions exist either within or between linked pairs of molecules. For example, the antiparallel interaction involving $\mathrm{C} 2 \equiv \mathrm{~N} 2$ and $\mathrm{N} 2 \equiv \mathrm{C} 2^{\mathrm{i}}$ has a $\mathrm{N} 2 \cdots \mathrm{~N} 2^{\mathrm{i}}$ separation of $3.248(5) \AA$ and a $\mathrm{C} 2-\mathrm{N} 2 \cdots \mathrm{~N} 2^{i}$ angle of $93.8(2)^{\circ}$ [symmetry code: (i) $\left.x,-y,-1-z\right]$; on the other hand, the interactions involving $\mathrm{C} 1 \equiv \mathrm{~N} 1$ and $\mathrm{N} 1 \equiv \mathrm{C} 1^{\text {iii }}$ [symmetry code: (iii) $1-x,-y,-z$] has a larger $\mathrm{N} 1 \cdots \mathrm{~N} 1^{\text {iii }}$ separation of $3.614(5) \AA$ and a $\mathrm{C} 1-\mathrm{N} 1 \cdots \mathrm{~N} 1^{\mathrm{iii}}$ angle of $79.13(19)^{\circ}$.

Experimental

The title compound was synthesized by the reaction of N-phenyl- o phenylenediamine and 2-cyano-3,3-bis(methylthio)acrylonitrile according to the method of El-Shafei et al. (1995). Single crystals of (I) were grown by slow evaporation, in air, of an ethanol solution. Selected analytical data: pale yellow solid, yield 79.4\%; m.p. 555-557 K; ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$): $\delta 6.80-7.64(m, 9 H), 13.03(s, 1 \mathrm{H})$; IR (KBr): v 3148, 3103, 3001, 2946, 2212, 2187, 1624, 1573, 1481, 1256, $1195,758,690 \mathrm{~cm}^{-1}$.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{4}$
$M_{r}=258.28$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=10.377(3) \AA$
$b=17.876(5) \AA$
$c=7.226(2) \AA$
$\beta=106.235(4)^{\circ} \AA$
$V=1286.9(7) \AA^{3}$
$Z=4$
$D_{x}=1.333 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 950
\quad reflections
$\theta=2.3-27.1^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Parallelepiped, colourless
$0.15 \times 0.10 \times 0.05 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
5318 measured reflections
2260 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.130$
$S=1.13$
2260 reflections
181 parameters
H -atom parameters constrained

Figure 2
Packing of the molecules in the unit cell, viewed along the c axis. Dashed lines indicate $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Table 1
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.86	2.03	$2.875(3)$	166
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{~N} 1^{\mathrm{ii}}$	0.93	2.58	$3.390(4)$	145

Symmetry codes: (i) $-x,-y,-1-z$; (ii) $x, \frac{1}{2}-y, \frac{1}{2}+z$.
The H atoms were included using a riding model and were constrained to have $\mathrm{C}-\mathrm{H}=0.93$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}=$ $1.2 U_{\text {eq }}$ of their parent atom.

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge financial support from the Ministry of Education, China, through project No. 60171008, supported by NSFC.

References

Bock, H., Ziemer, K., Nather, C., Schodel, H., Kleine, M. \& Sievert, M. (1996). Z. Naturforsch. Teil B, 51, 1538-1554.

Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
El-Shafei, A. K., Soliman, A. M., Sultan, A. A.-R. \& El-Saghier, A. M. M. (1995). Gazz. Chim. Ital. 125, 115-118.

Nesterov, V. N., Deng, X., Timofeeva, T. V., Antipin, M. Yu., Clark, R. D., Frazier, D. O. \& Penn, B. (2000). J. Mol. Struct. 523, 309-318.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

